324

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Atwell, S., Huang, Y. S., Vilhjálmsson, B. J., Willems, G., Horton, M., Li, Y., Meng, D., et al.,

(2010). Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred

lines. Nature, 465, 627–631.

Bandillo, N., Raghavan, C., Muyco, P. A., Sevilla, M. A. L., Lobina, I. T., Dilla-Ermita, C.

J., Tung, C. W., et al., (2013). Multi-parent advanced generation inter-cross (MAGIC)

populations in rice: Progress and potential for genetics research and breeding. Rice, 6, 1–15.

Bartoli, C., & Roux, F., (2017). Genome-wide association studies in plant pathosystems:

Toward an ecological genomics approach. Front. Plant Sci., 8, 763.

Bhatta, M., Morgounov, A., Belamkar, V., Wegulo, S. N., Dababat, A. A., Erginbas-Orakci,

G., Bouhssini, M. E., et al., (2019). Genome-wide association study for multiple biotic

stress resistance in synthetic hexaploid wheat. Int. J. Mol. Sci., 20, 3667.

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S.,

(2007). TASSEL: Software for association mapping of complex traits in diverse samples.

Bioinformatics, 23, 2633–2635.

Breckle, S. W., (2002). Salinity, halophytes and salt affected natural ecosystems. In: Salinity:

Environment-Plants-Molecules, 53–77.

Brown, T. B., Cheng, R., Sirault, X. R., Rungrat, T., Murray, K. D., Trtilek, M., Furbank, R. T.,

et al., (2014). Trait capture: Genomic and environment modeling of plant phenomic data.

Curr. Opin. Plant Biol., 18, 73–79.

Buckler, E. S., Holland, J. B., Bradbury, P. J., Acharya, C. B., Brown, P. J., Browne, C., Ersoz,

E., et al., (2009). The genetic architecture of maize flowering time. Science, 325, 714–718.

Chen, J., Chopra, R., Hayes, C., Morris, G., Marla, S., Burke, J., Xin, Z., & Burow, G., (2017).

Genome-wide association study of developing leaves’ heat tolerance during vegetative

growth stages in a sorghum association panel. Plant Genom., 10, 1–15.

Church, G. M., (2006). Genomes for all. Sci. Amer., 294, 46–55.

Daneshmand, F., Arvin, M. J., & Kalantari, K. M., (2010). Physiological responses to NaCl

stress in three wild species of potato in vitro. ActaPhysiol.Plant., 32, 91–101.

Fan, X. D., Wang, J. Q., Yang, N., Dong, Y. Y., Liu, L., Wang, F. W., Wang, N., et al., (2013).

Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought

stress by high-throughput Illumina sequencing. Gene, 512, 392–402.

Flint‐Garcia, S. A., Thuillet, A. C., Yu, J., Pressoir, G., Romero, S. M., Mitchell, S. E.,

Doebley, J., et al., (2005). Maize association population: A high‐resolution platform for

quantitative trait locus dissection. Plant J., 44, 1054–1064.

Guo, J., Li, C., Zhang, X., Li, Y., Zhang, D., Shi, Y., Song, Y., et al., (2020). Transcriptome

and GWAS analyses reveal candidate genes for seminal root length of maize seedlings

under drought stress. Plant Sci., 292, 110380.

Hiersche, M., Rühle, F., & Stoll, M., (2013). Postgwas: Advanced GWAS interpretation in R.

PloS One, 8, e71775.

Huang, X., Kurata, N., Wang, Z. X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., et al., (2012). A

map of rice genome variation reveals the origin of cultivated rice. Nature, 490, 497–501.

Jeong, S., Kim, J. Y., & Kim, N., (2020). GMStool: GWAS-based marker selection tool for

genomic prediction from genomic data. Sci. Rep., 10, 1–12.

Jin-Long, G., Li-Ping, X., Jing-Ping, F., Ya-Chun, S., Hua-Ying, F., You-Xiong, Q., & Jing-

Sheng, X., (2012). A novel dirigent protein gene with highly stem-specific expression from

sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep., 31, 1801–1812.